Answer:
Option A
Explanation:
We have y= $(tan^{-1} x)^{2}$
on differentiating w.r.t x, we get
$\frac{dy}{dx}=\frac{2 \tan^{-1}x}{1+x^{2}}$
$\Rightarrow$ $(1+x^{2})\frac{dy}{dx}=2 \tan^{-1}x$
On squaring both sides, we get
$(1+x^{2})^{2}(\frac{dy}{dx})^{2}=4( \tan^{-1}x)^{2}$
$\Rightarrow$ $(1+x^{2})^{2}(\frac{dy}{dx})^{2}=4y$ $[\because y= \tan^{-1}x)^{2}]$
Again , differentiating w.r.t x , we get
$(1+x^{2})^{2}\left(2\frac{dy}{dx}.\frac{d^2y}{d^2x}\right)+2(1+x^{2})(2x)\left(\frac{dy}{dx}\right)^{2}=4\frac{dy}{dx} $
On dividing both sides by $2\frac{dy}{dx}$,
we get
$(1+x^{2})^{2}\left(\frac{d^2y}{d^2x}\right)+2x(1+x^{2})\frac{dy}{dx}=4$